Key Generation Algorithm In Cloud Computing

Key Generation Algorithm In Cloud Computing Average ratng: 8,1/10 6675 reviews

In this paper, we discuss the symmetric and Asymmetric algorithms to provide security in the field of cloud computing with different parameters and propose a new approached public key cryptosystem for security in cloud computing. Keywords: Security, Encryption, Decryption, Cloud Computing, Data Storage, RSA Algorithm. . Internet of Things (IoT) and cloud computing (CC) have been widely studied and applied in many fields, as they can provide a new method for intelligent perception and connection from M2M, and on-demand use and efficient sharing of resources, respectively. The public key and the secret key. Key Generation: KeyGen (p, q). Oct 31, 2012  Identity Based Encryption (IDE): In IDE, one’s publicly known identity (ex. Email address) is being used as his/her public key where ascorresponding private key is generated from the known identity.IDE encryption scheme is a four algorithms/steps scheme where the algorithms are i. Setup Algorithm ii.Key (private key) Generation Algorithm iii. The key generation center (KGC) first checks the legitimacy of the token, and if the signature is illegal, it aborts; otherwise, it runs the key generation algorithm and outputs a blind key. The user receives the blind key from KGC and extracts the private key.

  1. Mell, P.M., Grance, T.: SP 800-145, the NIST definition of cloud computing. Technical report, NIST, Gaithersburg, MD, United States (2011)Google Scholar
  2. Buchade, A.R., Ingle, R.: Key management for cloud data storage: methods and comparisons. In: Fourth International Conference on Advanced Computing and Communications Technologies, pp. 263–270 (2014)Google Scholar
  3. Ali, M., Khan, S.U., Vasilakos, A.V.: Security in cloud computing: opportunities and challenges. Inf. Sci. (2015). https://doi.org/10.1016/j.ins.2015.01.025
  4. Stallings, W.: Cryptography and Network Security: Principles and Practice, 5th edn, p. 121e44, 253e97. Pearson Education (2011)Google Scholar
  5. Jamgekar, R.S., Joshi, G.S.: File encryption and decryption using secure RSA. Int. J. Emerg. Sci. Eng. 1, 11–14 (2013)Google Scholar
  6. Somani, N., Mangal, D.: An improved RSA cryptographic system. Int. J. Comput. Appl. 105, 16 (2014)Google Scholar
  7. Patidar, R., Bhartiya, R.: Modified RSA cryptosystem based on offline storage and prime number. In: IEEE International Conference on Computing Intelligence and Computing Research, pp. 1–6 (2013)Google Scholar
  8. Abd, S.K., Al-Haddad, S.A.R., Hashim, F., Abdullah, A.: A review of cloud security based on cryptographic mechanisms. In: International Symposium on Biometrices and Security Technologies (ISBAST), pp. 106–111 (2014)Google Scholar
  9. Song, N., Chen, Y.: Novel hyper-combined public key based cloud storage key management scheme. China Commun. 11, 185–194 (2014)Google Scholar
  10. Thangavel, M., Varalakshmi, P., Murrali, M., Nithya, K.: An enhanced and secured RSA key generation scheme (ESRKGS). J. Inf. Secur. Appl. 20, 3–10 (2015)Google Scholar
  11. Luy, E., Karatas, Z.Y., Ergin, H.: Comment on an enhanced and secured RSA key generation scheme (ESRKGS). J. Inf. Secur. Appl. (2016)Google Scholar
  12. Wagner, N.R.: The laws of cryptography with java code. Technical report, pp. 78–112 (2003)Google Scholar
  13. Bishop, D.: Introduction to cryptography with java applets, pp. 237–250 (2003)Google Scholar
This class provides the functionality of a secret (symmetric) key generator.

Key generators are constructed using one of the getInstance class methods of this class.

KeyGenerator objects are reusable, i.e., after a key has been generated, the same KeyGenerator object can be re-used to generate further keys.

There are two ways to generate a key: in an algorithm-independent manner, and in an algorithm-specific manner. Dota 2 download mac steam. The only difference between the two is the initialization of the object:

Key Generation Algorithm In Cloud Computing Software

  • Algorithm-Independent Initialization

    All key generators share the concepts of a keysize and a source of randomness. There is an init method in this KeyGenerator class that takes these two universally shared types of arguments. There is also one that takes just a keysize argument, and uses the SecureRandom implementation of the highest-priority installed provider as the source of randomness (or a system-provided source of randomness if none of the installed providers supply a SecureRandom implementation), and one that takes just a source of randomness.

    Since no other parameters are specified when you call the above algorithm-independent init methods, it is up to the provider what to do about the algorithm-specific parameters (if any) to be associated with each of the keys.

  • Algorithm-Specific Initialization

    For situations where a set of algorithm-specific parameters already exists, there are two init methods that have an AlgorithmParameterSpec argument. Neverwinter nights 2 platinum cd key generator. One also has a SecureRandom argument, while the other uses the SecureRandom implementation of the highest-priority installed provider as the source of randomness (or a system-provided source of randomness if none of the installed providers supply a SecureRandom implementation).

In case the client does not explicitly initialize the KeyGenerator (via a call to an init method), each provider must supply (and document) a default initialization.

Every implementation of the Java platform is required to support the following standard KeyGenerator algorithms with the keysizes in parentheses:

  • AES (128)
  • DES (56)
  • DESede (168)
  • HmacSHA1
  • HmacSHA256

Key Generation Algorithm In Cloud Computing System

These algorithms are described in the KeyGenerator section of the Java Cryptography Architecture Standard Algorithm Name Documentation. Consult the release documentation for your implementation to see if any other algorithms are supported.